Landscape Effects of Peat Collapse: Examples From the Ten Thousand Islands NWR and Everglades NP

Kim Andres, Michael Savarese, and Brian Hoye GEER 2019

Inner Bay Geomorphology: 2 flavors:

- Ten Thousand Islands
- NW Everglades

Geomorphologic Phenomenon

"Pocking": salt marsh grass mortality, peat collapse, drop in landscape elevation at much as 30 cm.

- Pond formation, pond enlargement, pond merger to generate large bays, inland bays with clover leaf shapes.
- Two periods: currently & middle Holocene(?)

Not unique to South & SW FL . . Other locales & studies:

- Maryland (Kearney 1996; Kearney and Rogers 2010)
- Maine (Wilson et al. 2007; Wilson et al. 2010)
- Delaware Bay (Kearney and Riter 2011)
- Southwest Florida (Hoye 2009)

Pocking in the Ten Thousand Islands National Wildlife Refuge

Image U.S. Geological Survey 25°57'08.53" N 81°32'57.92" W elev 0 ft

Imagery Date: Feb 1, 2006

Eye alt 2851 ft

Google

Pocking of Spartina Marshes

Implications: Tidal Pond Formation

Evidence of initiation, growth, and merger of ponds

Implications of SLR: Tidal Pond Evolution

Southwest Everglades Evidence of initiation, growth, and merger of ponds at different scales

Recent Pocking in Ten Thousand Islands NWR

Andres et al., in press. Estuaries & Coasts

Experimental Design

Sediment coring

Time Series Spatial Analysis

Sediment Coring

Identifying Precursor Habitats

- Pond cores largely lack peat
 - Comparatively less peats in pond vs. partner marsh cores
 - 11 of 16 pond cores contain no peat development

Carbonate-rich

Brackish marsh

Subtidal / longer hydroperiod

Terrestrial upland

Mangrove tidal wetland

Intermittently wetted/dried

GIS Pond Analysis

- ESRI ArcMap (10.1, 10.2.1) software
- 10 randomly-selected 1 km² marsh locations
- Compare 1953 & 2009

Identifying Pond Changes Over Time

- Pond Area:
 - Total combined pond area increase of 226km²

- Marsh ponds: +276km²
- Mangrove ponds: -50km²

TOTAL POND AREA			
(m²)	WEST	EAST	TOTAL
1953	2.22E+05	2.29E+05	4.51E+05
2009	3.84E+05	2.93E+05	6.77E+05
TOT CHANGE	1.62E+05	6.32E+04	2.26E+05
% CHANGE	73%	28%	50%
RATE OF CHANGE (m ² /	() 2847.92	1108.80	3956.72

Identifying Pond Changes Over Time

500

0

1953

West Tot

2009

Pond Count:

Increased at 3x the rate in western sites (1-5) than eastern sites (6-10)

2009

East Tot

1953

Middle to Late Holocene Pocking in Everglades NP

Hoye, 2009. MS Thesis, FGCU

Geomorphologic change along the southwest coast

Inner Bay Transect

Intertidal oyster reef Subtidal bay Intertidal wetland peat Subaerial soil

Geomorphologic Implications

Similar phenomenon in earlier Holocene resulting in this . . .

Major landscape transformation!

An earlier Holocene SL high stand?

Northwest coastal Everglades

Conclusions

- Pocking (peat collapse) can transform the wetland landscape.
- Expect such a response during times of accelerated SLR.
- Creates a management difficulty: How do you prevent pocking and make the landscape more receptive to mangrove migration?
- Restoring freshwater hydrology can slow or avert the process.

Acknowledgements

- South Florida Water Management District, Ten Thousand Islands National Wildlife Refuge, Fakahatchee Strand Preserve State Park, and Everglades National Park.
- Larry Richardson, Ken Krauss, Rebecca Howard, Andy From, Mike Barry, Jill Schmid, Tim Howard, and Ananta Nath.
- Faculty, staff, and students from Florida Gulf Coast University and its Coastal Watershed Institute.

Fakahatchee Bay Transect

Intertidal oyster reef Subtidal bay Mangrove peat Subaerial soil

Chatham River Transect

- Same phenomena in Broad & Lostman's Rivers.
 - Interior bays are degradational.

Intertidal oyster reef Subtidal bay Mangrove peat

Subaerial soil